AN ORDINANCE TO AMEND SECTION 20.94 OF THE URBANA

 CITY CODE TO PROVIDE THAT THE MINIMUM FINE SHALL BE ONE DOLLAR
be it Ordained by the city council of urbane, Illinois,

THAT:

1. The minimum fine for overtime parking at a metered space, as set
forth in Section 20.94 of the Urbana City Code, shall be $\$ 1.00$.
2. As amended, Section 20.94 shall read as follows:

Every person who permits a vehicle to be parked overtime at a parking meter as provided in Section 20.86 of this Code may, within twenty-four hours of the time when the notice required in Section 20.93 of this Code was attached to such vehicle, pay as the penalty for, and in full satisfaction of such violation, the sum of One Dollar (\$1.00) and within the next seventy-two (72) hours the sum of Three Dollars ${ }^{(12.00}$). The failure of such person to make such payment within such seventy-two (72) hours shall render such person subject to the penalties provided in Section 1.6 of this Code.

This Ordinance shall be in full force and effect from and after its passage and publication in accordance with the terms of Section 1-2-4 of the Illinois Municipal Code.
3. All prior amendments inconsistent with this Ordinance are repealed upon this Ordinance taking effect.

PASSED by the City Council of Urbane, Illinois, this $2^{n^{2}}$ day
\qquad - 1971.

Duane Eckerty, City Clerk
APPROVED by the Mayor this \qquad day of \qquad -
1971.

Charles M. Zipprodt, Mayor

ORDINANCES AND RESOLUTIONS ROUTING SLIP

ORIGINATOR \qquad date \qquad \square Resolution

To Be Published if Passed)

Not To Be Published)

City Attorney
\square Public Works Dept.
[) Police Dept.Fire Dept.
\qquad Dept.

Records and Map Section
(x) Mayor

Distribution Copy To All Council Members
Method

CITY COUNCIL ACTION

Passed As Written

Amended, To City AttorneyMayor's Signature \qquad
Clerk's Signature \qquad

Published (If Appropriate)
\qquad

Initial Date
1 W $\geq 2 \sqrt{n}$
\qquad
\square

